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An algorithm is presented for reconstructing stochastic nonlinear dynamical models from noisy time-series
data. The approach is analytical; consequently, the resulting algorithm does not require an extensive global
search for the model parameters, provides optimal compensation for the effects of dynamical noise, and is
robust for a broad range of dynamical models. The strengths of the algorithm are illustrated by inferring the
parameters of the stochastic Lorenz system and comparing the results with those of earlier research. The
efficiency and accuracy of the algorithm are further demonstrated by inferring a model for a system of five
globally and locally coupled noisy oscillators.
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I. INTRODUCTION

Stochastic nonlinear dynamical models are widely used in
studying complex �natural as well as man-made� phenomena;
examples range from molecular motors �1� and semiconduc-
tor lasers �2� to epidemiology �3� and coupled matter-
radiation systems in astrophysics �4�. Accordingly, much at-
tention has been paid in the statistical physics community to
the central problem of reconstructing �i.e., inferring� stochas-
tic nonlinear dynamical models from noisy measurements
�see, e.g., �5,6��. The chief difficulty here stems from the fact
that, in a great number of important problems, it is not pos-
sible to derive a suitable model from “first principles,” and
one is therefore faced with a rather broad range of possible
parametric models to consider. Furthermore, experimental
data can sometimes be extremely skewed due to the intricate
interplay between noise and nonlinearity, making it very dif-
ficult to extract from data important “hidden” features �e.g.,
coupling parameters� of a model.

Although no general method exists for inferring the pa-
rameters of stochastic nonlinear dynamical models from
measurements, various schemes have been proposed recently
�7–15� to deal with different aspects of this “inversion” prob-
lem. An important numerical technique, suggested in
�12–14�, is based on estimating drift and diffusion coeffi-
cients at a number of points in the phase space of the dy-
namical system. This technique was extended further in �15�
to handle both dynamical and measurement noise. In prin-
ciple, this approach allows subsequent use of the least-
squares method for the estimation of the model parameters.
Such an empirical approach, however, requires a consider-
able amount of data and an intensive computational effort
even for a simple stochastic equation. A more general, and
efficient, theoretical approach is therefore very desirable.

Arguably the most general approach to the solution of this
problem is furnished by Bayes’ theorem �8,10,16�. Indeed, it
was shown in �9� that the Bayesian method provides a rigor-
ous and systematic basis for heuristic modifications made

earlier �7� to the least-squares method to enable its use on
noisy measurements. The Bayesian approach was employed
in �8� to estimate levels of dynamical and measurement noise
for a known dynamical model. The Bayesian method has
also been used for parameter estimation in maps in the pres-
ence of dynamical �9� and weak measurement �10� noise.
Finally, an application of the Bayesian method to continuous
systems was considered in �11�.

A common drawback of these earlier works is their exclu-
sive reliance on numerical methods for the optimization of
cost functions and the evaluation of multidimensional nor-
malization integrals encountered in the theory. This disad-
vantage becomes increasingly more pronounced when sys-
tems with ever larger numbers of unknown parameters are
investigated. Another major deficiency is that most of the
earlier works deal with discrete maps, and the corresponding
results are therefore not immediately applicable to continu-
ous systems, since the transformation from noise variables to
dynamical variables is different in discrete and continuous
cases. Specifically, as will be shown below, a prefactor ac-
counting for the Jacobian of the transformation must be in-
cluded in the likelihood function in the continuous case.
Such a prefactor was considered in �11� in the context of
Bayesian inference for continuous systems; however, an ad
hoc likelihood function was used there instead of the correct
form derived here.

In this paper, we introduce a technique for Bayesian in-
ference of stochastic nonlinear dynamical models from noisy
measurements. At the core of our algorithm is a path-integral
representation of the likelihood function that yields the cor-
rect form for the Jacobian prefactor. This term provides op-
timal compensation for the effects of dynamical noise, thus
leading to robust inference for a broad range of dynamical
models. Another key feature of the approach is the param-
etrization of the vector “force” field, which permits an ana-
lytical treatment of the inference problem, thus obviating the
need for extensive global optimization. These improvements
lead to an efficient and accurate algorithm for reconstructing
from time-series data models of stochastic nonlinear dynami-
cal systems with large numbers of unknown parameters.

The paper is organized as follows. The general formula-
tion of the problem and its analytical solution are presented*Electronic address: Vadim.N.Smelyanskiy@nasa.gov
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in Sec. II. The algorithm is then applied in Sec. III A to data
from the stochastic Lorenz system, and its performance is
compared with those of earlier research. The advantages of
the present method are further illustrated in Sec. III B by
inferring a model for a system of five globally and locally
coupled noisy oscillators. Finally, the results are discussed
and conclusions are drawn in Sec. IV.

II. THEORY OF RECONSTRUCTION OF STOCHASTIC
NONLINEAR DYNAMICAL MODELS

A. Problem description

We envision a typical experimental situation where the
stochastic trajectory x�t� of a dynamical system is measured
at sequential time instants �tn ;n=0,1 ,… ,N�, and a set of
data Y= �yn�y�tn�� is thus obtained. For instance, x�t� may
represent the coordinates of a molecular motor progressing
along a microtubule �1� or the fluctuating Stokes vector of a
semiconductor laser field �2�. Our objective is to extract from
Y all available information regarding the dynamical evolu-
tion of x�t�. As mentioned in Sec. I, we advocate the Baye-
sian approach for the solution of this problem. Toward this
end, one has to introduce a parametric model for the dynami-
cal system and a statistical model for the measurements.
These elements allow one to incorporate into the solution of
the reconstruction problem any available a priori informa-
tion on the time-series data �stationarity, embedding dimen-
sion, etc.�, as well as expert domain knowledge �e.g., a the-
oretical analysis of the physics problem at hand�.

The dynamical and measurement equations commonly
adopted in the context of model reconstruction are

ẋ�t� = f�x;c� + ��t� ,

y�t� = x�t� + ��t� , �1�

with x ,y ,� ,��RL, and f :RL�RL. Here, the first equation
represents the dynamical model in the form of a set of
coupled nonlinear Langevin equations with a vector field
f�x ;c� parametrized by unknown coefficients c�RM, and the
second equation relates the observations to the system trajec-
tory. We assume that the additive dynamical and measure-
ment noise processes ��t� and ��t� are stationary, white, and
Gaussian with

���t�	 = 0, ���t��T�t��	 = D̂ ��t − t�� ,

���t�	 = 0, ���t��T�t��	 = �2Î ��t − t�� , �2�

where D̂ and � are also typically unknown. Thus, the ele-
ments �cm ;m=1,2 ,… ,M� of the model coefficient vector c,
the elements �Dll� ; l , l�=1,2 ,… ,L� of the dynamical noise

covariance �or diffusion� matrix D̂, and the measurement
noise intensity �2 together constitute the complete set

M = �c,D̂,�� �3�

of unknown parameters. The model reconstruction problem,
then, is that of inferring the elements of the parameter set M
from the measured time-series data Y.

B. Bayesian inference

In Bayesian model inference, two distinct probability den-
sity functions �PDFs� are ascribed to the set of unknown
model parameters: the prior ppr�M� and the posterior
pps�M
Y�, respectively, representing our state of knowledge
about M before and after processing a block of data Y.
These two PDFs are related to each other via Bayes’ theorem
�5�:

pps�M
Y� =
p�Y
M�ppr�M�

� p�Y
M�ppr�M�dM
. �4�

Here, the sampling distribution p�Y
M� is the conditional
PDF of the measurements Y for a given choice of the model
M; it is also referred to, as we do, as the likelihood of M
given Y. Meanwhile, the prior acts as a regularizer, concen-
trating the parameter search to those regions of the model
space favored by our expertise and any available auxiliary
information. This initial assignment of probabilities must, of
course, be “coherent” �17�, i.e., consistent, at least implicitly,
with the physics of the problem. In practice, Eq. �4� can be
applied iteratively using a sequence of data blocks Y ,Y� ,…;
the posterior computed from block Y serves as the prior for
the next block Y�, etc. For a sufficiently large number of
observations, pps�M
Y ,Y� ,…� becomes sharply peaked
around a most probable model M*.

The main thrust of recent research on stochastic nonlinear
dynamical model reconstruction �7,9–11� has been directed
toward developing �i� efficient optimization algorithms for
extracting the most probable model M* from the posterior,
and �ii� efficient multidimensional integration techniques for
evaluating the normalization factor in the denominator of Eq.
�4�. These efforts have mostly employed ad hoc expressions
for the likelihood function �see, e.g., the cost function of Eq.
�31� in �11��; consequently, the resulting inference schemes
fail to properly compensate for the effects of noise. In fact, it
appears that there is a lack in the model-reconstruction lit-
erature of a closed-form expression �expanded to correct or-
ders in the sampling period� for the likelihood function of the
measurements of a continuous system trajectory.

Below we introduce a different approach to Bayesian in-
ference of stochastic nonlinear dynamical models. The
method has two key analytical features. First, the likelihood
function is written in the form of a path integral over the
stochastic system trajectory, which includes a prefactor that
optimally compensates for the detrimental effects of �dy-
namical� noise. Second, we suggest a parametrization of the
unknown vector field that renders the inference problem es-
sentially linear for a broad class of nonlinear dynamical sys-
tems, and thus helps us find optimal parameter estimates
without extensive numerical optimization. These features en-
able us to write an efficient and accurate Bayesian inference
algorithm for reconstructing models of nonlinear dynamical
systems driven by noise. As a prelude to the formal develop-
ment that follows, the reader may at this point wish to review
the theory given in Appendix A for the maximum-likelihood
reconstruction of a one-dimensional system model.
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C. The likelihood function

As we pointed out above, one of the central challenges in
the inference of stochastic nonlinear dynamical models is the
derivation of a suitable likelihood function that optimally
compensates for the effects of noise. A key ingredient in this
context is the probability density functional FM�x�t�� of
finding the system in “state” x�t� at time t �11,18–20�. This is
supplemented by pob�Y
X� denoting the PDF of observing a
time series Y for a specific realization X= �xn� of the system
trajectory. Thus, we may express the likelihood function very
generally in the form of a path integral over the random
trajectories of the dynamical system as

p�Y
M� = �
x�ti�

x�tf�

pob�Y
X�FM�x�t��Dx�t� , �5�

giving the probabilistic relationship between the observa-
tions Y and the unknown parameters M of the model �1�.
Here, we choose ti� t0� tN� tf so that p�Y
M� does not
depend on the particular initial and final states x�ti� and x�tf�.
We note that the path-integral approach has also proved use-
ful in nonlinear filtering of random signals �see, e.g., �24��
where standard spectral and correlation analyses fail.

The explicit form of FM�x�t�� has been given in �21–23�;
however, in the context of dynamical inference, it is not nec-
essary to employ this exact form as one can usually rely on
the smallness of the sampling interval. Accordingly, adopting
a uniform sampling scheme tn= t0+nh, we assume here for
the sake of simplicity that h��tN− t0� /N is small, and rewrite
Eq. �1� using a midpoint Euler discretization scheme in the
form

xn+1 = xn + h f�x̃n;c� + zn,

yn = xn + �n, �6�

where x̃n� 1
2 �xn+1+xn�, while zn are independent, zero-mean,

Gaussian random variables with covariance �znzn�
T 	

=h D̂ �nn�. The probability of a particular realization �zn� of
the dynamical noise process is simply

P��zn�� = �
n=0

N−1
dzn

�2�h�L
D̂

exp�−

1

2h
zn

TD̂−1zn� . �7�

Changing to dynamical state variables using �6�, we thus
obtain the desired PDF for the dynamical system �1� to have
an arbitrary trajectory �xn�:

FM��xn�� = pst�x0�J��xn���
n=0

N−1
1

�2�h�L
D̂

exp�−

1

2h
�xn+1

− xn − h f�x̃n;c��TD̂−1�xn+1 − xn − h f�x̃n;c��� ,

�8�

where pst�x� signifies the stationary distribution of x�t�, and
the Jacobian of the transformation is given by

J��xn�� = �� �zln

�xl�n�
�� � �

n=1

N

�
l=1

L �1 −
h

2

� f l�x̃n;c�
�xln

�
� exp�−

h

2�
n=1

N

tr �̂�x̃n;c�� , �9�

approximated to leading order in h, with the elements of the

matrix �̂ defined as �ll�x ;c���f l�x ;c� /�xl�.
The evaluation of �5� requires, in addition, that we adopt a

specific form for the measurement PDF pob�Y
X�. We as-
sume here that, for each trajectory component xl�t�, the mea-
surement error � is negligible compared with the fluctuations
induced by the dynamical noise; i.e., �2�hDll. Conse-
quently, we may use

pob�Y
X� � �
n=0

N

��yn − xn� �10�

in �5�, and the set of unknown model parameters to be in-

ferred from data reduces to M= �c , D̂�. With this substitu-
tion, Eq. �5� is easily evaluated; introducing ỹn� 1

2 �yn+1

+yn�, we write the result in the form

−
2

N
ln p�Y
M� = −

2

N
pst�y0� + L ln�2�h� + ln
D̂


+
h

N
�
n=0

N−1

�tr �̂�ỹn;c� + �ẏn − f�ỹn;c��TD̂−1�ẏn

− f�ỹn;c��� , �11�

where we introduced the “velocity” ẏn��yn+1−yn� /h. It is
important to note that this likelihood function is asymptoti-
cally exact in the limit h→0 and N→�, with the total ob-
servation duration T=Nh remaining constant.

It is the term tr �̂�ỹn ;c� in the above that provides opti-
mal compensation for the detrimental effects of dynamical
noise, and distinguishes our likelihood function from those
introduced in earlier works. Formally, this term emerges
from the path integral as the Jacobian of the transformation
from noise variables to dynamical variables �22,25�. We em-
phasize, however, that this is not merely a correction term,
but is in fact crucial for accurate inference. In particular, for
a small attractor �with characteristic length scale smaller than
square root of the noise intensity� the inference is only pos-
sible due to this term as will be shown in Sec. III.

D. Parametrization of the unknown vector field

As mentioned in Sec. I, one of the main difficulties en-
countered in the inference of stochastic nonlinear dynamical
models is that the cost function, defined in Eq. �15� below, is
generally nonlinear in the model parameters, thus requiring
the use of extensive numerical optimization methods for
finding its global minimum. The parametrization we now
introduce avoids this difficulty while still encompassing a
broad class of nonlinear dynamical models. Indeed, many of
the model reconstruction examples considered in earlier
works on stochastic nonlinear dynamical inference can be
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solved within this framework. Moreover, a large number of
important practical applications �see, e.g., �26,27�� can also
be treated using the same approach.

We parametrize the nonlinear vector field in the form

f�x;c� = Û�x�c , �12�

where Û�x� is an L	M matrix of suitably chosen basis func-
tions, and c is an M-dimensional vector of unknown param-
eters. The choice of basis functions is open to any appropri-
ate class of �polynomial, trigonometric, etc.� functions that
may be required for a satisfactory representation of the vec-
tor field. In general, if we use G different basis functions
�
g�x� ;g=1,2 ,… ,G� to model the vector field f, then the

matrix Û will have the block structure

Û = ��

1 0 … 0

0 
1 … 0

� � � �
0 0 … 
1

�
	�


2 0 … 0

0 
2 … 0

� � � �
0 0 … 
2

�…�

G 0 … 0

0 
G … 0

� � � �
0 0 … 
G

�� ,

�13�

comprising G diagonal blocks of size L	L �M =GL�, with
the x dependence suppressed for brevity. An important fea-
ture of Eq. �12� for our subsequent development is that,
while possibly highly nonlinear in x , f�x ;c� is strictly linear
in c.

As shown next, Eqs. �11� and �12� are the two main in-
gredients that enable an analytic solution to the problem of
stochastic nonlinear dynamical model inference from time-
series data.

E. The algorithm

We start by choosing a prior model PDF that is Gaussian

in c and uniform in D̂:

ppr�M� � exp�−
1

2
�c − cpr�T�̂pr�c − cpr�� . �14�

Substituting Eqs. �12� and �14� and the likelihood p�Y
M�
given by Eq. �11� into Eq. �4�, we obtain the posterior model

PDF in the form pps�M
Y�=const	exp�−SY�c , D̂��, where

SY�c,D̂� = �Y�D̂� − cTwY�D̂� +
1

2
cT�̂Y�D̂�c �15�

is the cost function whose global minimum yields the most

probable model M*= �c* , D̂*�. Here, use was made of the
definitions

�Y�D̂� =
h

2 �
n=0

N−1

ẏn
TD̂−1ẏn +

N

2
ln
D̂
 , �16�

wY�D̂� = �̂prcpr + h�
n=0

N−1 �Ûn
TD̂−1ẏn −

1

2
vn� , �17�

�̂Y�D̂� = �̂pr + h�
n=0

N−1

Ûn
TD̂−1Ûn, �18�

where Ûn� Û�ỹn�, vn�v�ỹn�, and the components of the
vector v�x� are

vm�x� = �
l=1

L
�Ulm�x�

�xl
, m = 1,2,…,M . �19�

For a given block of data Y of length �N+1�, the best
estimates for the model parameters are given by the posterior

means of c and D̂, which coincide with the global minimum

of SY�c , D̂�. We handle this optimization problem in the fol-
lowing way. Assume for the moment that c is known in Eq.
�15�; for the first iteration, take c=cpr. Then, minimizing

SY�c , D̂� with respect to D̂, we find that the posterior distri-

bution over D̂ has a mean

�D̂	 =
1

N
�
n=0

N−1

�ẏn − Ûnc��ẏn − Ûnc�T. �20�

Assume next that D̂ is known, and note from Eq. �15� that in
this case, the posterior distribution over c is Gaussian. Its

covariance is given by �̂Y�D̂�, and its mean

�c	 = �̂Y
−1�D̂�wY�D̂� �21�

minimizes SY�c , D̂� with respect to c. Thus, for the second

iteration, cpr and �̂pr are replaced with �c	 and �̂Y�D̂�, re-
spectively. This two-step �analytical� optimization procedure
is continued iteratively until convergence, which is typically
much faster than with the brute-force numerical optimization
that has been attempted in earlier works.

It is worthwhile to pause here and reflect on the content of
Eq. �17�. The first term in the sum is essentially the general-
ized least-squares �GLS� result �see Appendix B�, and van-
ishes at the attractors of the dynamical system �1�. On the
other hand, the second term in the sum on the right-hand side

of Eq. �17�, originating from the term tr �̂�ỹn ;c� in Eq. �11�,
does not vanish at an attractor, and is in fact crucial for
accurate inference in the presence of noise. This can be dem-
onstrated analytically by rewriting the sum in integral form
as

wY�D̂� = �̂prcpr + �
x�t0�

x�t0+T�

Û�y�t��TD̂−1dy −
1

2
�

t0

t0+T

v�y�t��dt .

�22�

It can now be seen that, for an attractor localized in the phase
space, the first integral will remain finite since the initial and
final points of integration both belong to the attractor. Mean-
while, the second integral in Eq. �22� will grow with the
duration of observation T. In particular, for a point attractor,
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the first integral is identically zero and the second, “compen-
sating” term alone contributes to inference. This result is
intuitively clear since, in the absence of noise, the system
will stay forever at the same point �i.e., the point attractor�
and no structure can be inferred. It is the dynamical noise
that forces the system to move about in the phase space, thus
making it possible to infer its structure from time-series data.

In general, then, both of the integral terms in Eq. �22� are
needed to optimally compensate for the effects of dynamical
noise and thus enable robust convergence of our inference
algorithm. The relative importance of these two terms will be
investigated quantitatively in the following section.

III. INFERENCE EXAMPLES

We have verified the accuracy and robustness of our al-
gorithm on several different types of dynamical systems.
Here, we discuss its performance on two representative ex-
amples.

A. The Lorenz system

We start with the archetypical chaotic nonlinear system of
Lorenz,

ẋ1 = �x2 − x1� + �1�t� ,

ẋ2 = r x1 − x2 − x1x3 + �2�t� ,

ẋ3 = x1x2 − b x3 + �3�t� , �23�

augmented by zero-mean Gaussian noise processes �l�t� with
covariance ��l�t��l��t��	=Dll���t− t��. Synthetic data �with no
measurement noise� were generated by simulating �23� using
the standard parameter set =10, r=28, b= 8

3 , and for vari-
ous levels of dynamical noise intensities as explained below.
The phase portrait of the Lorenz system with dynamical
noise is shown in Fig. 1 along with the noiseless case to
visually convey the difficulty of the inference problem.

1. Parameter estimation with strong dynamical noise

We compare now the performance of our algorithm with
the results of earlier work �11�. No attempt was made in �11�
to identify the model of the system and only four unknown
parameters were estimated.

In parameter estimation, the functional form of the non-
linear force field—in this case, the right-hand side of Eq.
�23�—is assumed known, and the associated coefficients are
then estimated from data. This is the approach reported in

�11�, where the diffusion matrix is taken in the form D̂=�2Î,
and the unknown parameters � ,r ,b ,�2� are estimated via
extensive numerical optimization of a cost function by simu-
lated annealing and back-propagation techniques. We now
demonstrate that our algorithm can estimate the parameters
of the system �23� extremely efficiently and with very high
accuracy.

First we notice that since the diffusion matrix is diagonal,
our algorithm is reduced in this case to the trivial one-
dimensional analytical solution of the problem for each

equation in the form �compare with Eqs. �17�, �18�, �20�, and
�21� and see Appendix A for the details�

ci = Ĥi
−1wi, i = 1,…,3,

where

wil = �
n=0

N−1 �cil
il −
�2

2

�
il

�xi
�

and

Ĥi = �
n=0

N−1�

i1
i1 
i1
i2 … 
i1
iL


i2
i1 
i2
i2 … 
i2
iL

� � � �

iL
i1 
iL
i2 … 
iL
iL

� .

Noise intensity is found according to Eq. �20�. We note that
in each equation we now have different basis functions 
il.
For the first equation we have the following two basis func-
tions: 
11=x1 and 
12=x2. For the second equation we have

FIG. 1. The phase portrait of the chaotic nonlinear Lorenz sys-
tem �23� with the standard parameters �see text�: �a� deterministic
system; �b� stochastic system with strong dynamical noise, simu-
lated with a diagonal diffusion matrix having elements D11=1500,
D22=1600, and D33=1700. �All quantities in the equations and fig-
ures are dimensionless in this paper.�
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21=x1, 
22=x2, and 
23=x1x3. And for the last equation we
have 
31=x1x2, 
32=x3.

Thus there are a total of eight unknown parameters to be
estimated: a seven-dimensional coefficient vector c and the
noise intensity �2. �Note that this is already more ambitious
than what was done in �11�, since we are attempting to esti-
mate all model coefficients, including those that are equal to
±1.�

The convergence of our scheme is so rapid that it is fea-
sible to use the algorithm in real time on “streaming” data.
To make a fair comparison we use the same number of data
points as in �11�. As an indication of the inference accuracy,
we quote in Table I results for data simulated with the stan-
dard Lorenz parameter set and two values of dynamical noise
intensity for weak and strong cases.

Now we turn to an extension of our approach that allows
for efficient identification of the Lorenz system from a sub-
stantially extended model space with 33 unknown param-
eters.

2. Model reconstruction with strong dynamical noise

When the analytical form of the nonlinear force field is
not known a priori, one may adopt a parametric model, as
was done in Eq. �12�; in this setting, it is more appropriate to
refer to the inference problem as model reconstruction. In
practical terms, the main difference between parameter esti-
mation and model reconstruction is in the number of un-
known parameters involved, which is typically an order of
magnitude larger in the latter case. This proliferation of un-
knowns is one of the main reasons why inference methods
that rely on brute-force numerical techniques are rendered
largely impracticable for model reconstruction. On the other
hand, owing to its analytical foundation, our algorithm is
quite capable of handling this more difficult task, as we dem-
onstrate below.

We start by considering the data set of Fig. 1, where the
structure of the Lorenz attractor is drastically obscured by
the presence of strong dynamical noise �almost two orders of
magnitude stronger then in �11��. We wish to fit this data set
with a polynomial model of quadratic nonlinearity. Toward

this end, we introduce a parametric model of the form

ẋl = �
l�=1

3

all�xl��t� + �
l�,l�=1

3

bll�l�xl��t�xl��t� + �l�t� , �24�

l , l� , l�=1,2 ,3. Including the elements of the �symmetric�
diffusion matrix D̂, we now have a total of 33 unknown
parameters comprising the set M={�all�� , �bll�l�� , �Dll��}. De-
spite the restriction to linear, bilinear, and quadratic polyno-
mial basis functions, Eq. �24� still represents an extremely
broad class of dynamical models. Assuming no measurement
noise for simplicity, the application of our algorithm entails
the use of Eqs. �20� and �21� with �17� and �18�. The inferred
parameter values are shown in Table II; it can be seen that,
even in this case of extremely strong dynamical noise, our
algorithm succeeds in accurately reconstructing the Lorenz
model.

3. Accuracy of the inferred parameters

The accuracy of the reconstruction depends on a number
of factors. As an example, consider the inferred values and
variances of the Lorenz parameter r as a function of the total
observation duration, shown in Fig. 2 for two different levels
of noise. Of particular note is a sharp, steplike decrease in
the variances that occurs on the same time scale as the period
of system oscillations, �osc�0.6 �marked by the dashed line

TABLE I. Inference results for the parameters of the system �23�
with weak �first set� and strong �second set� dynamical noise. A
synthetic data set of 4000 points was generated for each case by

simulating the system with a diffusion matrix D̂=�2Î, and subse-
quently sampling its trajectory with h=0.002.

Parameter Value Estimate

 10.00 9.9916

r 28.00 27.8675

b 2.667 2.6983

� 1.00 0.9965

 10.00 9.9039

r 28.00 28.3004

b 2.667 2.8410

� 40.00 39.9108

TABLE II. Inference results for the parameters of the model
�24�. �For brevity, only a representative subset of the bll�l� and Dll�
parameters is shown.� Synthetic data, comprising 200 blocks of
600 000 points each, were generated by simulating the system with
the standard Lorenz parameter set and a diagonal diffusion matrix,
and subsequently sampling its trajectory with h=0.005.

Parameter Value Estimate

a11 −10.00 −10.55

a21 28.00 27.53

a31 0.0 −0.43

a12 10.00 10.77

a22 −1.00 −0.194

a32 0.0 0.596

a13 0.0 0.065

a23 0.0 0.001

a33 −2.667 −2.759

b111 0.0 0.013

b211 0.0 0.001

b311 0.0 0.018

b112 0.0 0.002

b212 0.0 −0.012

b312 1.00 0.995

b113 0.0 −0.016

b213 −1.00 −0.985

D11 1500.0 1522.1

D22 1600.0 1621.5

D33 1700.0 1713.4
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in Fig. 2�. In addition to the total observation duration T, the
inference error is also sensitive to the values of the sampling
interval h and the noise intensities Dll. For example, for the
parameters of curve 1 in Fig. 2, the relative inference error
was 0.015%. When the noise intensity was increased by a
factor of 104 �curve 2 in Fig. 2�, the ratio T /h �i.e., the
number of data points N� had to be increased by at least a
factor of 250 to achieve an inference error below 1%.

We have observed that it is generally possible to achieve
arbitrarily accurate inference results with a �sufficiently
small� fixed sampling interval by increasing the total dura-
tion of observation; this is true even in the case of a full �i.e.,
nondiagonal� diffusion matrix. Indeed, we were able to
achieve highly accurate parameter estimates for sampling in-
tervals ranging from 10−6 to 0.01 and noise intensities rang-
ing from 0 to 102. As an example, we summarize in Table III
our inference results for the model �24� with a full diffusion
matrix, showing extremely high accuracy.

4. Optimal compensation for the noise-induced errors

Finally, we would like to demonstrate the importance of
the Jacobian prefactor �9� included in our likelihood function
by examining the inference results obtained with and without
this term. As shown in Fig. 3 for parameter r of the Lorenz
system, the omission of the prefactor in the likelihood func-
tion results in a systematic underestimation of this parameter,

whereas the inclusion of this term leads to an accurate infer-
ence as it optimally compensates for the effects of dynamical
noise.

5. Discussion of results

The Lorenz system provides a concrete example with
which to emphasize the advantages of our algorithm over
previous work. We note first that we derive the correct form
of the likelihood function and avoid using the ad hoc likeli-
hood function introduced in �11�. Furthermore, we obtain
analytical solution of the problem. These innovations allow
us to estimate model parameters of the Lorenz system much
faster and more accurately using the same number of points
as in �11�. Furthermore, our results unlike the results reported
in �11� do not depend either on the choice of initial values for
the model parameters or on the ad hoc conditions imposed
on the analysis of the experimental data to exclude points
from certain regions of the phase space.

The computational efficiency of our algorithm also allows
us to lift the practical limitation on the total number of data
points used for inference in previous work. �The relatively
small number of points �4000� used for inference in �11� was
dictated by the complexity of the extensive numerical opti-

FIG. 2. Results for �a� the posterior mean �i.e., inferred value�
and �b� the posterior variance �i.e., associated uncertainty� of the
model parameter a21 corresponding to parameter r of the Lorenz
system �24� as a function of increasing observation duration. Curve
1, �Dll�= �0.01,0.012,0.014�, h=0.002; curve 2, �Dll�
= �100,120,140�, h=0.000 02. The time instant of steplike decrease
in the variance is indicated by the vertical dashed line.

TABLE III. Inference results for the parameters of the model
�24�, obtained using 200 blocks of 600 000 data points each,
sampled at h=0.005. True and inferred parameter values are shown
along with the corresponding error �relative and absolute errors for
the nonzero and zero parameters, respectively�. The inference error
is below 1% for all parameters, and much less for most.

Parameter Value Estimate % error

a11 −10.0000 −9.9984 0.0161

a21 28.0000 28.0139 0.0496

a31 0.0 −0.0052 −0.5180

a21 10.0000 9.9982 0.0178

a22 −1.0000 −1.0051 0.5120

a23 0.0 0.0031 0.3072

a31 0.0 0.0014 0.1390

a32 0.0 0.0015 0.1542

a33 −2.6667 −2.6661 0.0196

b111 0.0 0.0002 0.0179

b211 0.0 0.0002 0.0238

b311 0.0 −0.0004 −0.0401

b112 0.0 −0.0002 −0.0208

b212 0.0 −0.0002 −0.0223

b312 1.0000 1.0006 0.0607

b113 0.0 −0.0001 −0.0111

b213 −1.0000 −1.0004 0.0446

D11 0.2867 0.2865 0.0587

D22 0.4087 0.4081 0.1564

D33 0.5118 0.5148 0.5946

D12=D21 0.2052 0.2049 0.1442

D13=D31 0.1069 0.1061 0.7657

D23=D32 0.1814 0.1812 0.1028
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mization algorithms used therein.� In our approach to infer-
ence, processing of O�105� data points takes only a few sec-
onds on a personal computer with a 1-GHz CPU, therefore
enabling the use of very large data sets to achieve arbitrarily
accurate model reconstruction.

More importantly, the efficiency of our algorithm allows
us to extend substantially the dimensionality of the model
space. As a consequence it can be efficiently applied to deal
with a more general problem of model reconstruction, when
the functional form of a nonlinear vector field is unknown.

B. A system of five coupled oscillators

The limitations of inference algorithms that rely on nu-
merical methods for global optimization and multidimen-
sional integration come into sharper focus when systems
with large numbers of model parameters are investigated. We
now wish to illustrate the advantages of our algorithm by
inferring a model for a system comprising five locally and
globally coupled van der Pol oscillators with O�102� un-
known model parameters.

With K=5, the system under study is

u̇k = vk,

v̇k = �l�1 − uk
2�vk − �luk + �

k�=1\k

K

�kk�uk�

+ uk��k�k−1�uk−1 + �k�k+1�uk+1� + �
k�=1

K

kk��k�, �25�

where ��k�t�� are mutually independent, zero-mean, unit-
variance, �-correlated, Gaussian noise processes. We assume

�for simplicity� that there is no measurement noise, and that
the state is partially observed to produce the signal y
= �v1v2v3v4v5�T. The state of the system is thus described by
the ten-dimensional vector x= �u1¯ u5v1¯ v5�T. We note,
however, that values of uk in the model �25� are assumed to
be known and do not have to be inferred. Therefore the prob-
lem is reduced to the inference of the model parameters of
five couple equations for vk, which are parametrized accord-

ing to Eq. �12� with D̂=T.
The phase portrait of this system, projected onto the

�u1 ,u2 ,u3� subspace of its phase space, is shown in Fig. 4 for
some nominal set of model parameters.

We choose the following basis functions with which to
reconstruct the model:


k = uk,


k+K = vk,


k+2K = uk
2vk,

FIG. 3. Demonstration of improved inference accuracy due to
the prefactor �9� in the likelihood function. The true value of the
parameter being inferred is indicated by the vertical dashed line.
The solid and dashed curves, respectively, show the histograms of
parameter values inferred by our algorithm and by the generalized
least-squares method, which lacks the Jacobian prefactor. The his-
tograms were built from an ensemble of 1000 numerical experi-
ments with 90 000 data points each.

FIG. 4. The phase portrait of the system �25� as projected onto
the �u1 ,u2 ,u3� subspace: �a� deterministic system; �b� stochastic

system with a diagonal diffusion matrix of the form D̂=100 Î.
�Note the scale change between the axes of the two figures.� See
Table IV and Fig. 5 for the values of some of the model parameters
used in the simulation.
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1+3K = u1
2,


2+3K = u1u2,

�


15+3K = u5
2,

k=1,2 ,… ,K. Together with the elements of the �symmetric�
diffusion matrix D̂, we thus have a total of 165 model pa-
rameters to infer. We summarize in Table IV the results of
our algorithm for the first oscillator, once again showing high
inference accuracy. Additionally, the convergence of the pa-
rameters of the fifth oscillator and the noise intensities to
their correct values is shown in Fig. 5 as a function of the
amount of data used.

In order to further highlight the vital noise compensation
effect provided by the prefactor term in the likelihood func-
tion used in the present work, we compare in Fig. 6 inference
results for one of the coefficients of the system �25�, �1,

obtained with two different diffusion matrices D̂ and D̂ /4,

where the matrix D̂ is chosen at random to be

D̂ = �
3.9628 2.9636 0.6176 2.4941 2.5068

2.9636 5.5045 2.7690 5.2893 5.5421

0.6176 2.7690 4.6974 4.8813 3.0284

2.4941 5.2893 4.8813 7.1428 4.6732

2.5068 5.5421 3.0284 4.6732 7.5784
� .

�26�

As discussed earlier, without the Jacobian prefactor �9�, Eq.
�21� reduces to the GLS estimator. Figure 6 shows that the
GLS estimator systematically overestimates the value of �1;
the larger the noise intensity, the larger the systematic error,
reaching a few hundred per cent in this case, as shown by
curves 1� and 2�. On the other hand, when the proper Jaco-
bian prefactor is included in the likelihood function as in Eq.
�11�, we are able to achieve optimal compensation of the

noise-induced errors, as shown by curves 1 and 2 obtained
with the same noise intensities.

IV. DISCUSSION

In this paper, we introduced a technique for inferring the
unknown parameters of stochastic nonlinear dynamical sys-
tems from time-series data. The key features of our approach
are a likelihood function written in the form of a path inte-
gral over stochastic system trajectories, properly accounting
for measurement noise and optimally compensating for dy-
namical noise; and a parametrization of the unknown force
field that renders the inference problem essentially linear,
despite the strong nonlinearity of the model itself.

Specifically, our analytical derivation produces the correct
Jacobian prefactor in the likelihood function, which was
missed in earlier works. Meanwhile, the representation of the
system nonlinearity as an expansion over a set of basis func-
tions provides stable and robust inference for a broad range
of dynamical models. These features enabled us to devise a
highly accurate and efficient Bayesian inference algorithm
that can reconstruct models of stochastic nonlinear dynami-
cal systems without resorting to brute-force numerical opti-
mization.

TABLE IV. Inference results for the parameters of the first os-
cillator in the system �25�, obtained using 50 blocks of 150 000 data
points each, sampled at h=0.06. The inference error is well below
1% for all parameters.

Parameter Value Estimate % error

�1 −8.40 −8.4167 0.2

�1 −4.4000 −4.4031 0.07

�12 0.4400 0.4432 0.7

�13 −0.60 −0.6033 0.54

�14 0.96 0.9625 0.3

�15 0.80 0.8022 0.3

�12 −0.480 −0.4806 0.1

�15 0.8 0.8013 0.2

Q11 0.20 0.2020 1.0

FIG. 5. Accurate inference of �a� the parameters of the fifth
oscillator in the system �25� and �b� the elements of the last row of

the diffusion matrix Q̂. The horizontal axes show the number of
blocks of data used, with 800 points in each block, sampled at h
=0.02.

RECONSTRUCTION OF STOCHASTIC NONLINEAR … PHYSICAL REVIEW E 72, 026202 �2005�

026202-9



We illustrated the advantages of our approach by applying
it first to the inference of the stochastic nonlinear dynamical
system of Lorenz. In the context of parameter estimation
with eight unknown parameters, we showed that the accu-
racy and efficiency of our algorithm exceed those achieved
�under similar conditions� in earlier works. We also demon-
strated that our algorithm can deal with the Lorenz system in
the more general setting of model reconstruction, i.e., assum-
ing no knowledge of the functional form of the nonlinear
vector field. Although a much larger number of 33 unknown
parameters were involved here, our algorithm was still able
to achieve a high inference accuracy.

In order to further illustrate the strengths of our algorithm,
we applied it next to a system of five coupled nonlinear noisy
oscillators. Using a set of polynomial basis functions for the
nonlinear field and a full covariance matrix for the dynamical
noise, the model comprised 165 unknown parameters, all of
which were inferred within an error of 1% from a data set of
105 points, taking only a few seconds on a personal computer
of average computing power. These demonstrations, we be-
lieve, are convincing representation of the capability of our
approach, in both accuracy and efficiency, for reconstructing
models of stochastic nonlinear dynamical systems.

Furthermore, the efficiency of our algorithm has enabled
us recently to identify a stochastic nonlinear model of
coupled cardiovascular oscillators using univariate physi-
ological times-series data �29� thus opening an additional
venue for a broad range of important interdisciplinary appli-
cations.

Several simplifying assumptions were made here to pro-
vide a clear description of the algorithm in its barest form.
Although the examples of Sec. III dealt with noiseless mea-
surements, we have indicated in Sec. II how measurement
noise can be included systematically in our inference algo-
rithm. These examples also required the use of polynomials

only, but the approach is in fact completely flexible regarding
the type of basis functions used to model the nonlinear force,
including time delays. Additionally, the path-integral tech-
nique used here to derive the likelihood function allows for a
number of straightforward generalizations of our algorithm
to the reconstruction of models with colored and multiplica-
tive �or parametric� dynamical noise, and arbitrary �i.e., not
necessarily uniform or short� sampling intervals. Finally, al-
though the basic theory of Sec. II was developed under the
implicit assumption that all dynamical variables are available
for measurement, we have shown in Sec. III B that our algo-
rithm is able to reconstruct a complete model from partial
measurements of the system trajectory. Since it is often not
feasible to measure all degrees of freedom in practice, a gen-
eralization of our algorithm to deal with “hidden variables”
will be very useful. These extensions will be explored in
subsequent publications.
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APPENDIX A: MAXIMUM-LIKELIHOOD PARAMETER
ESTIMATION FOR A ONE-DIMENSIONAL

SYSTEM

Consider a one-dimensional stochastic nonlinear dynami-
cal system

ẋ�t� = f�x� + ��t� , �A1�

where ��t� is a zero-mean Gaussian noise process with
���t���0�	=D ��t�. The midpoint approximation to Eq. �A1�
on the time lattice �tn= t0+nh, n=0,1 ,… ,N� is

xn+1 = xn + h f�x̃n� + zn, �A2�

where we used xn�x�tn� and x̃n� 1
2 �xn+1+xn�, and zn

��tn
tn+h��t�dt to form a sequence of zero-mean Gaussian ran-

dom variables with �znzn�	=h D �nn�.
The probability of realization of a particular random se-

quence �zn� is

P��zn�� = �
n=0

N−1
dzn

2�hD
exp�−

zn
2

2hD
� . �A3�

Using the Markovian property of x�t� and the transformation
rule p��zn���ndzn= p��xn���ndxn, along with Eqs. �A2� and
�A3�, we find the probability density of the dynamical system
trajectory to be

p��xn�� = pst�x0�J��xn���2�hD�−N/2

	�
n=0

N−1

exp�−
h

2D
�ẋn − f�x̃n��2� , �A4�

where ẋn��xn+1−xn� /h, and the Jacobian of the transforma-
tion, to lowest order in h, is

FIG. 6. Further demonstration of improved inference accuracy
due to the prefactor �9� in the likelihood function. The true value of
the parameter being inferred is indicated by the vertical dashed line.
Histograms 1 and 2 show results obtained with our algorithm, while
histograms 1� and 2� are due to the GLS method, showing the
detrimental effect on inference accuracy of the missing prefactor.

The diffusion matrix was Q̂ for curves 1 and 1�, and 2Q̂ for curves
2 and 2� �see text�.
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J��xn�� � �
n=0

N−1 �1 −
h

2
f��x̃n�� � exp�−

h

2 �
n=0

N−1

f��x̃n�� .

Here, the prime indicates differentiation with respect to the
argument. Thus, we obtain for the negative logarithm of Eq.
�A4� the expression

S = − ln pst�x0� +
N

2
ln�2�hD�

+
h

2 �
n=0

N−1 � f��x̃n� +
1

D
�ẋn − f�x̃n��2� . �A5�

Assume now that we observe a time series �xn�, and wish
to reconstruct a one-dimensional stochastic nonlinear dy-
namical model for the system that generated the data; i.e.,
infer the form of the nonlinear function f�x� and estimate the
noise intensity D in Eq. �A1�. A fruitful approach to this
problem is to model the nonlinearity as a linear superposi-
tion of a set of nonlinear basis functions:

f�x� = �
m=1

M

cmum�x� = cTu�x� . �A6�

The maximum-likelihood �ML� estimates for the unknown
model parameters c and D are then furnished by the global
minimum of S. Thus, setting �S /�D=0 and passing to the
limit h→0 with T=Nh, we find

D =
1

N
�

t0

t0+T

�ẋ − cTu�x��2dt . �A7�

Next, substituting Eq. �A6� into Eq. �A5� and rearranging,

we obtain S=�−cTw+ 1 � 2cT�̂c, where

� = − ln pst�x0� +
N

2
ln�2�hD� +

1

2D
�

t0

t0+T

ẋ2dt ,

w = �
t0

t0+T � 1

D
ẋu�x� −

1

2

�u�x�
�x

�dt ,

�̂ =
1

D
�

t0

t0+T

u�x�uT�x�dt .

The condition �S /�c=0 now gives

c = �̂−1w . �A8�

The ML estimates are found by iterating Eqs. �A7� and �A8�
to convergence.

In Sec. II, this theory is extended to deal with multidimen-
sional system models and to include prior information on
model parameters; it is particularly interesting to contrast the
results above with our main algorithm given in Sec. II E.

APPENDIX B: THE GENERALIZED LEAST-SQUARES
ESTIMATOR

It is insightful to contrast the algorithm presented in this
paper with the generalized least-squares estimator. Starting

again with the system �1�, we neglect measurement noise,
adopt the parametrization of �12�, and apply the midpoint
approximation, obtaining

ẏn = Ûnc + �n, n = 0,1,…,N − 1, �B1�

where, as before, we introduced ẏn= �yn+1−yn� /h and Ûn

= Û�ỹn� with ỹn= 1
2 �yn+1+yn�. The vectors ��n� satisfy

��n	 = 0, ��n�n�
T 	 =

1

h
D̂ �nn�.

We may arrange the N equations contained in Eq. �B1�
into a single partitioned matrix equation as

d = Ĥ � + n , �B2�

where

Ĥ = �
Û0 0̂ … 0̂

0̂ Û1 … 0̂

� � � �

0̂ 0̂ … ÛN−1

� ,

� is a column vector comprising N copies of the unknown
model coefficient vector c, and d= �ẏ0ẏ1¯ ẏN−1�T and n
= ��0�1¯ �N−1�T are composite data and noise vectors, re-
spectively, the latter having zero mean and a covariance ma-
trix of the form

�n nT	 = �̂ =
1

h�
D̂ 0̂ … 0̂

0̂ D̂ … 0̂

� � � �

0̂ 0̂ … D̂
� .

Now, the GLS estimator for the vector � in Eq. �B2� is
given by �see, e.g., �28��

� = �ĤT�̂−1Ĥ�−1ĤT�̂−1d . �B3�

Using the diagonal forms of the matrices Ĥ and �̂, we can
extract from Eq. �B3� the following estimate for our model
coefficient vector:

c = ��
n=0

N−1

Ûn
TD̂−1Ûn�−1

�
n=0

N−1

Ûn
TD̂−1ẏn. �B4�

A comparison of Eq. �B4� with our corresponding result
�21� is facilitated by an examination of the definitions �17�
and �18�, whereupon it is seen that, in the absence of prior

information �i.e., �̂pr→ 0̂�, the only difference between the
two estimates is the additional term 1

2vn in our expression.
The importance of this extra term is borne out by the ex-
amples given in Sec. III, where it is observed that the GLS
estimator leads consistently to grossly inaccurate parameter
estimates, while our algorithm succeeds in achieving arbi-
trarily high inference accuracy.
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